optimal C for lambda=1

This commit is contained in:
2025-05-06 10:03:53 +02:00
parent ba7b0fa91f
commit e4fb271614
2 changed files with 37 additions and 11 deletions

View File

@@ -8,7 +8,15 @@ if __name__ == "__main__":
parser.add_argument('--num_runs', type=int, default=10, help='number of simulations to run with a fixed set of parameters')
parser.add_argument('--min_runs', type=int, default=5, help='minimum number of successful runs needed to calculate statistics')
parser.add_argument('--confidence_level', type=float, default=0.95, help='confidence level')
parser.add_argument('--best_c', action=argparse.BooleanOptionalAction, help='only run simulations for lambda=1 and determine the best C')
args = parser.parse_args()
simulation_wrapper(args.simulation_time, args.num_runs, args.min_runs, args.confidence_level)
if args.best_c:
lambda_vals = [1,]
else:
lambda_vals = [l/100 for l in range(1, 301)] # λ from 0.01 to 3.00
simulation_wrapper(args.simulation_time, args.num_runs, args.min_runs, args.confidence_level, lambda_vals)

View File

@@ -149,13 +149,13 @@ def run_single_simulation(args):
except ValueError: # Loss rate too high
return None
def simulation_wrapper(simulation_time, num_runs, min_runs, confidence_level):
def simulation_wrapper(simulation_time, num_runs, min_runs, confidence_level, lambda_vals):
C_values = [1, 2, 3, 6]
lambda_vals = [l/100 for l in range(1, 301)] # λ from 0.01 to 3.00
plt.figure(figsize=(12, 8))
mean_at_lambda1 = {}
with Pool() as pool: # pool of workers
for c in C_values:
lambda_points = []
@@ -202,13 +202,31 @@ def simulation_wrapper(simulation_time, num_runs, min_runs, confidence_level):
print(f"Stopped at λ={lambda_val:.2f} - no successful run")
break
plt.plot(lambda_points, means, label=f'C={c}')
plt.fill_between(lambda_points, ci_lower, ci_upper, alpha=0.2)
plt.xlabel('Arrival Rate (λ)')
plt.ylabel('Mean Response Time')
plt.title(f'Mean Response Time vs Arrival Rate ({num_runs} runs, 95% CI)')
plt.legend()
plt.grid(True)
plt.show()
# store response time for lamba = 1
if 1 in lambda_points:
idx = lambda_points.index(1)
mean_at_lambda1[c] = (means[idx], ci_lower[idx], ci_upper[idx])
# determine optimal C for lamba = 1
if mean_at_lambda1:
sorted_C = sorted(mean_at_lambda1.items(), key=lambda item: item[1][0])
(best_C, (mean1, lower1, upper1)), (_, (_, lower2, _)) = sorted_C[:2]
if upper1 < lower2:
print(f"Optimal C at λ=1 is {best_C} with Mean RT = {mean1:.2f} (non-overlapping CIs)")
else:
print("Confidence intervals overlap between the two best C.")
else:
print("\nNo valid λ=1 data for any C.")
# plot curves
if len(lambda_vals)>1:
plt.xlabel('Arrival Rate (λ)')
plt.ylabel('Mean Response Time')
plt.title(f'Mean Response Time vs Arrival Rate ({num_runs} runs, 95% CI)')
plt.legend()
plt.grid(True)
plt.show()