separate files
This commit is contained in:
1
src/.gitignore
vendored
Normal file
1
src/.gitignore
vendored
Normal file
@@ -0,0 +1 @@
|
||||
__pycache__/
|
230
src/main.py
230
src/main.py
@@ -1,224 +1,14 @@
|
||||
#!/bin/python3
|
||||
import random
|
||||
import os
|
||||
import time
|
||||
from heapq import heappush, heappop
|
||||
import matplotlib.pyplot as plt
|
||||
from scipy.stats import t
|
||||
import numpy as np
|
||||
from multiprocessing import Pool
|
||||
import argparse
|
||||
from simulation import simulation_wrapper
|
||||
|
||||
class Event:
|
||||
def __init__(self, event_type, request):
|
||||
self.event_type = event_type # 'request', 'router_finish', 'process_finish'
|
||||
self.request = request
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description='Simulation server cluster')
|
||||
parser.add_argument('--simulation_time', type=int, default=500, help='runtime of each individual simulation')
|
||||
parser.add_argument('--num_runs', type=int, default=10, help='number of simulations to run with a fixed set of parameters')
|
||||
parser.add_argument('--min_runs', type=int, default=5, help='minimum number of successful runs needed to calculate statistics')
|
||||
parser.add_argument('--confidence_level', type=float, default=0.95, help='confidence level')
|
||||
|
||||
class Request:
|
||||
def __init__(self, category, arrival_time):
|
||||
self.category = category
|
||||
self.arrival_time = arrival_time
|
||||
|
||||
|
||||
class Simulation:
|
||||
def __init__(self, C, lambda_val):
|
||||
# C clusters of K servers
|
||||
self.C = C
|
||||
self.K = 12 // C
|
||||
self.occupied_servers = [0] * self.C
|
||||
# service rate exponential distribution parameter
|
||||
service_rates = {1: 4/20, 2:7/20, 3:10/20, 6:14/20}
|
||||
self.service_rate = service_rates[C]
|
||||
# router request processing time
|
||||
self.router_processing_time = (C - 1) / C
|
||||
# λ
|
||||
self.lambda_val = lambda_val
|
||||
|
||||
self.router_state = 'idle' # 'idle', 'processing', 'blocked'
|
||||
|
||||
self.event_queue = [] # (time, Event)
|
||||
self.current_time = 0.0
|
||||
|
||||
self.router_queue = []
|
||||
|
||||
self.total_requests = 0
|
||||
self.lost_requests = 0
|
||||
self.loss_rate = 0
|
||||
self.response_times = []
|
||||
|
||||
def next_request(self):
|
||||
# exponential distribution, parameter λ
|
||||
interval = random.expovariate(self.lambda_val)
|
||||
new_time = self.current_time + interval
|
||||
arrival_time = new_time
|
||||
|
||||
category = random.randint(0, self.C-1) if self.C>1 else 0
|
||||
|
||||
request = Request(category, arrival_time)
|
||||
request_event = Event("request", request)
|
||||
|
||||
heappush(self.event_queue, (arrival_time, request_event))
|
||||
|
||||
def handle_request(self, request):
|
||||
self.total_requests += 1
|
||||
if len(self.router_queue) == 0 and self.router_state == "idle":
|
||||
self.router_process(request)
|
||||
elif ((len(self.router_queue) + (self.router_state == "processing")) < 100):
|
||||
self.router_queue.append(request)
|
||||
else:
|
||||
self.lost_requests += 1
|
||||
self.loss_rate = self.lost_requests / self.total_requests
|
||||
if self.loss_rate > 0.05 :
|
||||
raise ValueError("lossrate too high")
|
||||
|
||||
def router_process(self, request):
|
||||
if self.router_state == "idle":
|
||||
self.router_state = 'processing'
|
||||
router_finish = Event("router_finish", request)
|
||||
finish_time = self.current_time + self.router_processing_time
|
||||
heappush(self.event_queue, (finish_time, router_finish))
|
||||
else:
|
||||
raise RuntimeError("shouldn't reach this branch")
|
||||
|
||||
|
||||
def router_process_finish(self, request):
|
||||
# send the request to a free server
|
||||
if self.occupied_servers[request.category] < self.K:
|
||||
self.router_state = "idle"
|
||||
self.occupied_servers[request.category] += 1
|
||||
self.process_request(request)
|
||||
else:
|
||||
self.router_state = "blocked"
|
||||
self.router_queue.insert(0, request)
|
||||
|
||||
# router process next request
|
||||
self.router_process_next()
|
||||
|
||||
def router_process_next(self):
|
||||
if (len(self.router_queue) > 0) and (self.router_state == "idle"):
|
||||
self.router_process(self.router_queue.pop(0))
|
||||
|
||||
def process_request(self, request):
|
||||
interval = random.expovariate(self.service_rate)
|
||||
finish_time = self.current_time + interval
|
||||
process_finish = Event("process_finish", request)
|
||||
heappush(self.event_queue, (finish_time, process_finish))
|
||||
|
||||
def process_request_finish(self, request):
|
||||
self.response_times.append(self.current_time - request.arrival_time)
|
||||
self.occupied_servers[request.category] -= 1
|
||||
|
||||
if (self.router_state == "blocked") and (request.category == self.router_queue[0].category):
|
||||
self.process_request(self.router_queue.pop(0))
|
||||
self.occupied_servers[request.category] += 1
|
||||
self.router_state = "idle"
|
||||
self.router_process_next()
|
||||
|
||||
|
||||
def run(self, max_time):
|
||||
# first request
|
||||
self.next_request()
|
||||
|
||||
while (self.current_time <= max_time):
|
||||
current_event = heappop(self.event_queue)
|
||||
self.current_time = current_event[0]
|
||||
match current_event[1].event_type:
|
||||
case "request":
|
||||
self.next_request()
|
||||
self.handle_request(current_event[1].request)
|
||||
case "router_finish":
|
||||
self.router_process_finish(current_event[1].request)
|
||||
case "process_finish":
|
||||
self.process_request_finish(current_event[1].request)
|
||||
case _ :
|
||||
raise RuntimeError("shouldn't reach this branch")
|
||||
|
||||
|
||||
|
||||
def run_single_simulation(args):
|
||||
c, lambda_val, simulation_time = args
|
||||
# for different seed in each process
|
||||
random.seed(time.time() + os.getpid())
|
||||
try:
|
||||
sim = Simulation(c, lambda_val)
|
||||
sim.run(simulation_time)
|
||||
if len(sim.response_times) > 0:
|
||||
run_mean = sum(sim.response_times) / len(sim.response_times)
|
||||
loss_rate = sim.loss_rate
|
||||
return (run_mean, loss_rate)
|
||||
else:
|
||||
return None
|
||||
except ValueError: # Loss rate too high
|
||||
return None
|
||||
|
||||
def simulation_wrapper():
|
||||
C_values = [1, 2, 3, 6]
|
||||
simulation_time = 1000
|
||||
num_runs = 12
|
||||
min_runs = 5
|
||||
confidence_level = 0.95
|
||||
|
||||
lambda_vals = [l/100 for l in range(1, 301)] # λ from 0.01 to 3.00
|
||||
|
||||
plt.figure(figsize=(12, 8))
|
||||
|
||||
with Pool() as pool: # pool of workers
|
||||
for c in C_values:
|
||||
lambda_points = []
|
||||
means = []
|
||||
ci_lower = []
|
||||
ci_upper = []
|
||||
print(f"\nProcessing C={c}")
|
||||
|
||||
for lambda_val in lambda_vals:
|
||||
# run num_runs simulation for each lambda
|
||||
args_list = [(c, lambda_val, simulation_time) for _ in range(num_runs)]
|
||||
results = pool.map(run_single_simulation, args_list)
|
||||
|
||||
# collect results from successful simulations
|
||||
successful_results = [res for res in results if res is not None]
|
||||
run_results = [res[0] for res in successful_results]
|
||||
loss_rates = [res[1] for res in successful_results]
|
||||
|
||||
# reject if not enough successful run
|
||||
if len(run_results) >= min_runs:
|
||||
# statistics
|
||||
mean_rt = np.mean(run_results)
|
||||
std_dev = np.std(run_results, ddof=1)
|
||||
n = len(run_results)
|
||||
|
||||
# confidence interval
|
||||
t_value = t.ppf((1 + confidence_level)/2, n-1)
|
||||
ci = t_value * std_dev / np.sqrt(n)
|
||||
|
||||
# loss rate
|
||||
mean_loss = np.mean(loss_rates)
|
||||
|
||||
# store results
|
||||
lambda_points.append(lambda_val)
|
||||
means.append(mean_rt)
|
||||
ci_lower.append(mean_rt - ci)
|
||||
ci_upper.append(mean_rt + ci)
|
||||
|
||||
print(f"C={c}, λ={lambda_val:.2f}, Mean RT={mean_rt:.2f} ± {ci:.2f}, Loss Rate={mean_loss:.2%}")
|
||||
elif len(run_results) > 0:
|
||||
print(f"λ={lambda_val:.2f} skipped - only {len(run_results)} successful run(s)")
|
||||
continue
|
||||
else:
|
||||
print(f"Stopped at λ={lambda_val:.2f} - no successful run")
|
||||
break
|
||||
|
||||
|
||||
plt.plot(lambda_points, means, label=f'C={c}')
|
||||
plt.fill_between(lambda_points, ci_lower, ci_upper, alpha=0.2)
|
||||
|
||||
plt.xlabel('Arrival Rate (λ)')
|
||||
plt.ylabel('Mean Response Time')
|
||||
plt.title(f'Mean Response Time vs Arrival Rate ({num_runs} runs, 95% CI)')
|
||||
plt.legend()
|
||||
plt.grid(True)
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
simulation_wrapper()
|
||||
args = parser.parse_args()
|
||||
simulation_wrapper(args.simulation_time, args.num_runs, args.min_runs, args.confidence_level)
|
||||
|
||||
|
214
src/simulation.py
Normal file
214
src/simulation.py
Normal file
@@ -0,0 +1,214 @@
|
||||
import random
|
||||
import os
|
||||
import time
|
||||
from heapq import heappush, heappop
|
||||
import matplotlib.pyplot as plt
|
||||
from scipy.stats import t
|
||||
import numpy as np
|
||||
from multiprocessing import Pool
|
||||
|
||||
class Event:
|
||||
def __init__(self, event_type, request):
|
||||
self.event_type = event_type # 'request', 'router_finish', 'process_finish'
|
||||
self.request = request
|
||||
|
||||
class Request:
|
||||
def __init__(self, category, arrival_time):
|
||||
self.category = category
|
||||
self.arrival_time = arrival_time
|
||||
|
||||
|
||||
class Simulation:
|
||||
def __init__(self, C, lambda_val):
|
||||
# C clusters of K servers
|
||||
self.C = C
|
||||
self.K = 12 // C
|
||||
self.occupied_servers = [0] * self.C
|
||||
# service rate exponential distribution parameter
|
||||
service_rates = {1: 4/20, 2:7/20, 3:10/20, 6:14/20}
|
||||
self.service_rate = service_rates[C]
|
||||
# router request processing time
|
||||
self.router_processing_time = (C - 1) / C
|
||||
# λ
|
||||
self.lambda_val = lambda_val
|
||||
|
||||
self.router_state = 'idle' # 'idle', 'processing', 'blocked'
|
||||
|
||||
self.event_queue = [] # (time, Event)
|
||||
self.current_time = 0.0
|
||||
|
||||
self.router_queue = []
|
||||
|
||||
self.total_requests = 0
|
||||
self.lost_requests = 0
|
||||
self.loss_rate = 0
|
||||
self.response_times = []
|
||||
|
||||
def next_request(self):
|
||||
# exponential distribution, parameter λ
|
||||
interval = random.expovariate(self.lambda_val)
|
||||
new_time = self.current_time + interval
|
||||
arrival_time = new_time
|
||||
|
||||
category = random.randint(0, self.C-1) if self.C>1 else 0
|
||||
|
||||
request = Request(category, arrival_time)
|
||||
request_event = Event("request", request)
|
||||
|
||||
heappush(self.event_queue, (arrival_time, request_event))
|
||||
|
||||
def handle_request(self, request):
|
||||
self.total_requests += 1
|
||||
if len(self.router_queue) == 0 and self.router_state == "idle":
|
||||
self.router_process(request)
|
||||
elif ((len(self.router_queue) + (self.router_state == "processing")) < 100):
|
||||
self.router_queue.append(request)
|
||||
else:
|
||||
self.lost_requests += 1
|
||||
self.loss_rate = self.lost_requests / self.total_requests
|
||||
if self.loss_rate > 0.05 :
|
||||
raise ValueError("lossrate too high")
|
||||
|
||||
def router_process(self, request):
|
||||
if self.router_state == "idle":
|
||||
self.router_state = 'processing'
|
||||
router_finish = Event("router_finish", request)
|
||||
finish_time = self.current_time + self.router_processing_time
|
||||
heappush(self.event_queue, (finish_time, router_finish))
|
||||
else:
|
||||
raise RuntimeError("shouldn't reach this branch")
|
||||
|
||||
|
||||
def router_process_finish(self, request):
|
||||
# send the request to a free server
|
||||
if self.occupied_servers[request.category] < self.K:
|
||||
self.router_state = "idle"
|
||||
self.occupied_servers[request.category] += 1
|
||||
self.process_request(request)
|
||||
else:
|
||||
self.router_state = "blocked"
|
||||
self.router_queue.insert(0, request)
|
||||
|
||||
# router process next request
|
||||
self.router_process_next()
|
||||
|
||||
def router_process_next(self):
|
||||
if (len(self.router_queue) > 0) and (self.router_state == "idle"):
|
||||
self.router_process(self.router_queue.pop(0))
|
||||
|
||||
def process_request(self, request):
|
||||
interval = random.expovariate(self.service_rate)
|
||||
finish_time = self.current_time + interval
|
||||
process_finish = Event("process_finish", request)
|
||||
heappush(self.event_queue, (finish_time, process_finish))
|
||||
|
||||
def process_request_finish(self, request):
|
||||
self.response_times.append(self.current_time - request.arrival_time)
|
||||
self.occupied_servers[request.category] -= 1
|
||||
|
||||
if (self.router_state == "blocked") and (request.category == self.router_queue[0].category):
|
||||
self.process_request(self.router_queue.pop(0))
|
||||
self.occupied_servers[request.category] += 1
|
||||
self.router_state = "idle"
|
||||
self.router_process_next()
|
||||
|
||||
|
||||
def run(self, max_time):
|
||||
# first request
|
||||
self.next_request()
|
||||
|
||||
while (self.current_time <= max_time):
|
||||
current_event = heappop(self.event_queue)
|
||||
self.current_time = current_event[0]
|
||||
match current_event[1].event_type:
|
||||
case "request":
|
||||
self.next_request()
|
||||
self.handle_request(current_event[1].request)
|
||||
case "router_finish":
|
||||
self.router_process_finish(current_event[1].request)
|
||||
case "process_finish":
|
||||
self.process_request_finish(current_event[1].request)
|
||||
case _ :
|
||||
raise RuntimeError("shouldn't reach this branch")
|
||||
|
||||
|
||||
|
||||
def run_single_simulation(args):
|
||||
c, lambda_val, simulation_time = args
|
||||
# for different seed in each process
|
||||
random.seed(time.time() + os.getpid())
|
||||
try:
|
||||
sim = Simulation(c, lambda_val)
|
||||
sim.run(simulation_time)
|
||||
if len(sim.response_times) > 0:
|
||||
run_mean = sum(sim.response_times) / len(sim.response_times)
|
||||
loss_rate = sim.loss_rate
|
||||
return (run_mean, loss_rate)
|
||||
else:
|
||||
return None
|
||||
except ValueError: # Loss rate too high
|
||||
return None
|
||||
|
||||
def simulation_wrapper(simulation_time, num_runs, min_runs, confidence_level):
|
||||
C_values = [1, 2, 3, 6]
|
||||
|
||||
lambda_vals = [l/100 for l in range(1, 301)] # λ from 0.01 to 3.00
|
||||
|
||||
plt.figure(figsize=(12, 8))
|
||||
|
||||
with Pool() as pool: # pool of workers
|
||||
for c in C_values:
|
||||
lambda_points = []
|
||||
means = []
|
||||
ci_lower = []
|
||||
ci_upper = []
|
||||
print(f"\nProcessing C={c}")
|
||||
|
||||
for lambda_val in lambda_vals:
|
||||
# run num_runs simulation for each lambda
|
||||
args_list = [(c, lambda_val, simulation_time) for _ in range(num_runs)]
|
||||
results = pool.map(run_single_simulation, args_list)
|
||||
|
||||
# collect results from successful simulations
|
||||
successful_results = [res for res in results if res is not None]
|
||||
run_results = [res[0] for res in successful_results]
|
||||
loss_rates = [res[1] for res in successful_results]
|
||||
|
||||
# reject if not enough successful run
|
||||
if len(run_results) >= min_runs:
|
||||
# statistics
|
||||
mean_rt = np.mean(run_results)
|
||||
std_dev = np.std(run_results, ddof=1)
|
||||
n = len(run_results)
|
||||
|
||||
# confidence interval
|
||||
t_value = t.ppf((1 + confidence_level)/2, n-1)
|
||||
ci = t_value * std_dev / np.sqrt(n)
|
||||
|
||||
# loss rate
|
||||
mean_loss = np.mean(loss_rates)
|
||||
|
||||
# store results
|
||||
lambda_points.append(lambda_val)
|
||||
means.append(mean_rt)
|
||||
ci_lower.append(mean_rt - ci)
|
||||
ci_upper.append(mean_rt + ci)
|
||||
|
||||
print(f"C={c}, λ={lambda_val:.2f}, Mean RT={mean_rt:.2f} ± {ci:.2f}, Loss Rate={mean_loss:.2%}")
|
||||
elif len(run_results) > 0:
|
||||
print(f"λ={lambda_val:.2f} skipped - only {len(run_results)} successful run(s)")
|
||||
continue
|
||||
else:
|
||||
print(f"Stopped at λ={lambda_val:.2f} - no successful run")
|
||||
break
|
||||
|
||||
|
||||
plt.plot(lambda_points, means, label=f'C={c}')
|
||||
plt.fill_between(lambda_points, ci_lower, ci_upper, alpha=0.2)
|
||||
|
||||
plt.xlabel('Arrival Rate (λ)')
|
||||
plt.ylabel('Mean Response Time')
|
||||
plt.title(f'Mean Response Time vs Arrival Rate ({num_runs} runs, 95% CI)')
|
||||
plt.legend()
|
||||
plt.grid(True)
|
||||
plt.show()
|
Reference in New Issue
Block a user