loss rate
This commit is contained in:
@@ -1,6 +1,6 @@
|
|||||||
#!/bin/python3
|
#!/bin/python3
|
||||||
import argparse
|
import argparse
|
||||||
from simulation import simulation_wrapper
|
from simulation import simulation_wrapper2
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
parser = argparse.ArgumentParser(description='Simulation server cluster')
|
parser = argparse.ArgumentParser(description='Simulation server cluster')
|
||||||
@@ -18,5 +18,5 @@ if __name__ == "__main__":
|
|||||||
lambda_vals = [l/100 for l in range(1, 301)] # λ from 0.01 to 3.00
|
lambda_vals = [l/100 for l in range(1, 301)] # λ from 0.01 to 3.00
|
||||||
|
|
||||||
|
|
||||||
simulation_wrapper(args.simulation_time, args.num_runs, args.min_runs, args.confidence_level, lambda_vals)
|
simulation_wrapper2(args.simulation_time, args.num_runs, args.min_runs, args.confidence_level, lambda_vals)
|
||||||
|
|
||||||
|
@@ -57,7 +57,7 @@ class Simulation:
|
|||||||
|
|
||||||
heappush(self.event_queue, (arrival_time, request_event))
|
heappush(self.event_queue, (arrival_time, request_event))
|
||||||
|
|
||||||
def handle_request(self, request):
|
def handle_request(self, request, max_loss_value):
|
||||||
self.total_requests += 1
|
self.total_requests += 1
|
||||||
if len(self.router_queue) == 0 and self.router_state == "idle":
|
if len(self.router_queue) == 0 and self.router_state == "idle":
|
||||||
self.router_process(request)
|
self.router_process(request)
|
||||||
@@ -66,7 +66,7 @@ class Simulation:
|
|||||||
else:
|
else:
|
||||||
self.lost_requests += 1
|
self.lost_requests += 1
|
||||||
self.loss_rate = self.lost_requests / self.total_requests
|
self.loss_rate = self.lost_requests / self.total_requests
|
||||||
if self.loss_rate > 0.05 :
|
if self.loss_rate > max_loss_value :
|
||||||
raise ValueError("lossrate too high")
|
raise ValueError("lossrate too high")
|
||||||
|
|
||||||
def router_process(self, request):
|
def router_process(self, request):
|
||||||
@@ -113,7 +113,7 @@ class Simulation:
|
|||||||
self.router_process_next()
|
self.router_process_next()
|
||||||
|
|
||||||
|
|
||||||
def run(self, max_time):
|
def run(self, max_time, max_loss_value):
|
||||||
# first request
|
# first request
|
||||||
self.next_request()
|
self.next_request()
|
||||||
|
|
||||||
@@ -123,7 +123,7 @@ class Simulation:
|
|||||||
match current_event[1].event_type:
|
match current_event[1].event_type:
|
||||||
case "request":
|
case "request":
|
||||||
self.next_request()
|
self.next_request()
|
||||||
self.handle_request(current_event[1].request)
|
self.handle_request(current_event[1].request, max_loss_value)
|
||||||
case "router_finish":
|
case "router_finish":
|
||||||
self.router_process_finish(current_event[1].request)
|
self.router_process_finish(current_event[1].request)
|
||||||
case "process_finish":
|
case "process_finish":
|
||||||
@@ -134,12 +134,12 @@ class Simulation:
|
|||||||
|
|
||||||
|
|
||||||
def run_single_simulation(args):
|
def run_single_simulation(args):
|
||||||
c, lambda_val, simulation_time = args
|
c, lambda_val, simulation_time, max_loss_value = args
|
||||||
# for different seed in each process
|
# for different seed in each process
|
||||||
random.seed(time.time() + os.getpid())
|
random.seed(time.time() + os.getpid())
|
||||||
try:
|
try:
|
||||||
sim = Simulation(c, lambda_val)
|
sim = Simulation(c, lambda_val)
|
||||||
sim.run(simulation_time)
|
sim.run(simulation_time, max_loss_value)
|
||||||
if len(sim.response_times) > 0:
|
if len(sim.response_times) > 0:
|
||||||
run_mean = sum(sim.response_times) / len(sim.response_times)
|
run_mean = sum(sim.response_times) / len(sim.response_times)
|
||||||
loss_rate = sim.loss_rate
|
loss_rate = sim.loss_rate
|
||||||
@@ -149,12 +149,13 @@ def run_single_simulation(args):
|
|||||||
except ValueError: # Loss rate too high
|
except ValueError: # Loss rate too high
|
||||||
return None
|
return None
|
||||||
|
|
||||||
def simulation_wrapper(simulation_time, num_runs, min_runs, confidence_level, lambda_vals):
|
def simulation_wrapper1(simulation_time, num_runs, min_runs, confidence_level, lambda_vals):
|
||||||
C_values = [1, 2, 3, 6]
|
C_values = [1, 2, 3, 6]
|
||||||
|
|
||||||
plt.figure(figsize=(12, 8))
|
plt.figure(figsize=(12, 8))
|
||||||
|
|
||||||
mean_at_lambda1 = {}
|
mean_at_lambda1 = {}
|
||||||
|
loss_data = {}
|
||||||
|
|
||||||
with Pool() as pool: # pool of workers
|
with Pool() as pool: # pool of workers
|
||||||
for c in C_values:
|
for c in C_values:
|
||||||
@@ -162,11 +163,12 @@ def simulation_wrapper(simulation_time, num_runs, min_runs, confidence_level, la
|
|||||||
means = []
|
means = []
|
||||||
ci_lower = []
|
ci_lower = []
|
||||||
ci_upper = []
|
ci_upper = []
|
||||||
|
losses = []
|
||||||
print(f"\nProcessing C={c}")
|
print(f"\nProcessing C={c}")
|
||||||
|
|
||||||
for lambda_val in lambda_vals:
|
for lambda_val in lambda_vals:
|
||||||
# run num_runs simulation for each lambda
|
# run num_runs simulation for each lambda
|
||||||
args_list = [(c, lambda_val, simulation_time) for _ in range(num_runs)]
|
args_list = [(c, lambda_val, simulation_time, 0.05) for _ in range(num_runs)]
|
||||||
results = pool.map(run_single_simulation, args_list)
|
results = pool.map(run_single_simulation, args_list)
|
||||||
|
|
||||||
# collect results from successful simulations
|
# collect results from successful simulations
|
||||||
@@ -193,8 +195,9 @@ def simulation_wrapper(simulation_time, num_runs, min_runs, confidence_level, la
|
|||||||
means.append(mean_rt)
|
means.append(mean_rt)
|
||||||
ci_lower.append(mean_rt - ci)
|
ci_lower.append(mean_rt - ci)
|
||||||
ci_upper.append(mean_rt + ci)
|
ci_upper.append(mean_rt + ci)
|
||||||
|
losses.append(mean_loss)
|
||||||
|
|
||||||
print(f"C={c}, λ={lambda_val:.2f}, Mean RT={mean_rt:.2f} ± {ci:.2f}, Loss Rate={mean_loss:.2%}")
|
print(f"C={c}, λ={lambda_val:.2f}, Mean RT={mean_rt:.2f} ± {ci:.2f}, Mean Loss Rate={mean_loss:.2%}")
|
||||||
elif len(run_results) > 0:
|
elif len(run_results) > 0:
|
||||||
print(f"λ={lambda_val:.2f} skipped - only {len(run_results)} successful run(s)")
|
print(f"λ={lambda_val:.2f} skipped - only {len(run_results)} successful run(s)")
|
||||||
continue
|
continue
|
||||||
@@ -210,6 +213,8 @@ def simulation_wrapper(simulation_time, num_runs, min_runs, confidence_level, la
|
|||||||
idx = lambda_points.index(1)
|
idx = lambda_points.index(1)
|
||||||
mean_at_lambda1[c] = (means[idx], ci_lower[idx], ci_upper[idx])
|
mean_at_lambda1[c] = (means[idx], ci_lower[idx], ci_upper[idx])
|
||||||
|
|
||||||
|
loss_data[c] = (np.array(lambda_points), np.array(losses))
|
||||||
|
|
||||||
# determine optimal C for lamba = 1
|
# determine optimal C for lamba = 1
|
||||||
if mean_at_lambda1:
|
if mean_at_lambda1:
|
||||||
sorted_C = sorted(mean_at_lambda1.items(), key=lambda item: item[1][0])
|
sorted_C = sorted(mean_at_lambda1.items(), key=lambda item: item[1][0])
|
||||||
@@ -229,4 +234,80 @@ def simulation_wrapper(simulation_time, num_runs, min_runs, confidence_level, la
|
|||||||
plt.title(f'Mean Response Time vs Arrival Rate ({num_runs} runs, 95% CI)')
|
plt.title(f'Mean Response Time vs Arrival Rate ({num_runs} runs, 95% CI)')
|
||||||
plt.legend()
|
plt.legend()
|
||||||
plt.grid(True)
|
plt.grid(True)
|
||||||
plt.show()
|
|
||||||
|
return loss_data
|
||||||
|
|
||||||
|
def simulation_wrapper2(simulation_time, num_runs, min_runs, confidence_level, lambda_vals, max_loss_value=0.1):
|
||||||
|
loss_data = simulation_wrapper1(simulation_time, num_runs, min_runs, confidence_level, lambda_vals)
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
for c, (lams, losses) in loss_data.items():
|
||||||
|
lambda_vals2 = []
|
||||||
|
if len(lams)==0:
|
||||||
|
print(f"C={c}: no data at all.")
|
||||||
|
continue
|
||||||
|
pos_idx = np.where(losses > 0)[0]
|
||||||
|
if pos_idx.size > 0:
|
||||||
|
first_lambda = lams[pos_idx[0]]
|
||||||
|
else:
|
||||||
|
first_lambda = None
|
||||||
|
last_lambda = lams[-1]
|
||||||
|
|
||||||
|
print(f"C={c:>1} first λ with loss > 0: "
|
||||||
|
f"{first_lambda if first_lambda is not None else 'never'}; "
|
||||||
|
f" last λ with data: {last_lambda}")
|
||||||
|
|
||||||
|
lambda_vals2.extend([last_lambda + i/1000 for i in range(-100,51)])
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
lambda_points = []
|
||||||
|
losses = []
|
||||||
|
ci_lower = []
|
||||||
|
ci_upper = []
|
||||||
|
print(f"\nProcessing C={c}")
|
||||||
|
|
||||||
|
with Pool() as pool:
|
||||||
|
for lambda_val in lambda_vals2:
|
||||||
|
args_list = [(c, lambda_val, simulation_time, max_loss_value) for _ in range(num_runs)]
|
||||||
|
results = pool.map(run_single_simulation, args_list)
|
||||||
|
|
||||||
|
successful_results = [res for res in results if res is not None]
|
||||||
|
loss_rates = [res[1] for res in successful_results]
|
||||||
|
|
||||||
|
n = len(loss_rates)
|
||||||
|
|
||||||
|
if n >= min_runs:
|
||||||
|
# statistics
|
||||||
|
mean_loss = np.mean(loss_rates)
|
||||||
|
std_dev = np.std(loss_rates, ddof=1)
|
||||||
|
|
||||||
|
# confidence interval
|
||||||
|
t_value = t.ppf((1 + confidence_level)/2, n-1)
|
||||||
|
ci = t_value * std_dev / np.sqrt(n)
|
||||||
|
|
||||||
|
# store results
|
||||||
|
lambda_points.append(lambda_val)
|
||||||
|
losses.append(mean_loss)
|
||||||
|
ci_lower.append(mean_loss - ci)
|
||||||
|
ci_upper.append(mean_loss + ci)
|
||||||
|
|
||||||
|
print(f"C={c}, λ={lambda_val:.4f}, Mean Loss Rate={mean_loss:.2%} ± {ci:.2f}")
|
||||||
|
elif n > 0:
|
||||||
|
print(f"λ={lambda_val:.4f} skipped - only {n} successful run(s)")
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
print(f"Stopped at λ={lambda_val:.4f} - no successful run")
|
||||||
|
break
|
||||||
|
|
||||||
|
plt.plot(lambda_points, losses, label=f'C={c}')
|
||||||
|
plt.fill_between(lambda_points, ci_lower, ci_upper, alpha=0.2)
|
||||||
|
|
||||||
|
plt.xlabel('Arrival Rate (λ)')
|
||||||
|
plt.ylabel('Mean Loss Rate')
|
||||||
|
plt.title(f'Mean Loss Rate vs Arrival Rate ({num_runs} runs, 95% CI)')
|
||||||
|
plt.legend()
|
||||||
|
plt.grid(True)
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user