metaheuristic/genetic-algorithm.py

48 lines
2.1 KiB
Python
Raw Permalink Normal View History

#/bin/python
import random
2024-10-18 11:52:56 +02:00
# tasks = [4, 5, 8, 2, 10, 7]
# tasks = [random.randint(1,20) for _ in range(100)]
tasks = [19, 12, 12, 3, 5, 10, 2, 17, 18, 8, 20, 6, 3, 10, 6, 1, 13, 16, 17, 1, 11, 6, 12, 2, 11, 17, 8, 12, 7, 15, 1, 5, 17, 19, 5, 16, 15, 20, 7, 4, 12, 6, 17, 6, 8, 10, 8, 13, 15, 2, 6, 16, 11, 16, 16, 16, 1, 2, 17, 9, 4, 3, 7, 4, 1, 14, 16, 1, 1, 15, 20, 2, 13, 15, 15, 11, 5, 18, 1, 14, 19, 19, 19, 19, 5, 5, 12, 5, 2, 2, 2, 9, 8, 12, 6, 20, 18, 12, 12, 19]
sol1=[1, 0, 1, 1, 0, 1]
sol2=[0, 0, 1, 0, 1, 1]
def generate_initial_population(problem_data, k, popsize):
return [[random.randint(0, k-1) for _ in range(len(problem_data))] for _ in range(popsize)]
def fitness(solution, problem_data, k):
return max([sum(problem_data[i] for i in range(len(solution)) if solution[i] == j) for j in range(k)])
def crossover(solutionA, solutionB):
return [solutionA[i] if i % 2 == 0 else solutionB[i] for i in range(len(solutionA))]
def mutation(solution, k):
i = random.randint(0,len(solution)-1)
solution[i] = random.choice(list({i for i in range(k)} - {solution[i]}))
return solution
2024-10-18 11:37:16 +02:00
def genetic(problem_data, k, popsize, mutation_chance, stop, reproduce):
population = generate_initial_population(problem_data, k, popsize)
population.sort(key = lambda x : fitness(x, problem_data, k), reverse=True)
loop = 0
while loop<stop:
best = fitness(population[-1], problem_data, k)
new = []
for _ in range(reproduce):
2024-10-18 11:52:56 +02:00
weightsP = [(i+1)**2 for i in range(popsize)]
parents = random.choices(population, weights=weightsP, k=2)
2024-10-18 11:37:16 +02:00
x = random.random()
offspring = crossover(*parents)
new.append(mutation(offspring, k) if mutation_chance>x else offspring)
2024-10-18 11:52:56 +02:00
population = sorted(population + new, key=lambda x: fitness(x, problem_data, k), reverse=True)[-popsize:]
2024-10-18 11:37:16 +02:00
new_best = fitness(population[-1], problem_data, k)
loop = loop + 1 if best<=new_best else 0
best = new_best
return(population[-1])
2024-10-18 11:52:56 +02:00
ans = genetic(tasks, 4, 10, 0.7, 10, 5)
2024-10-18 11:37:16 +02:00
print(ans)
2024-10-18 11:52:56 +02:00
print(fitness(ans, tasks, 4))