2024-10-18 09:44:43 +02:00
|
|
|
#/bin/python
|
|
|
|
import random
|
|
|
|
|
|
|
|
tasks = [4, 5, 8, 2, 10, 7]
|
|
|
|
sol1=[1, 0, 1, 1, 0, 1]
|
|
|
|
sol2=[0, 0, 1, 0, 1, 1]
|
|
|
|
|
|
|
|
def generate_initial_population(problem_data, k, popsize):
|
|
|
|
return [[random.randint(0, k-1) for _ in range(len(problem_data))] for _ in range(popsize)]
|
|
|
|
|
|
|
|
def fitness(solution, problem_data, k):
|
|
|
|
return max([sum(problem_data[i] for i in range(len(solution)) if solution[i] == j) for j in range(k)])
|
|
|
|
|
|
|
|
def crossover(solutionA, solutionB):
|
|
|
|
return [solutionA[i] if i % 2 == 0 else solutionB[i] for i in range(len(solutionA))]
|
|
|
|
|
|
|
|
def mutation(solution, k):
|
|
|
|
i = random.randint(0,len(solution)-1)
|
|
|
|
solution[i] = random.choice(list({i for i in range(k)} - {solution[i]}))
|
|
|
|
return solution
|
2024-10-18 11:37:16 +02:00
|
|
|
|
|
|
|
def genetic(problem_data, k, popsize, mutation_chance, stop, reproduce):
|
|
|
|
population = generate_initial_population(problem_data, k, popsize)
|
|
|
|
population.sort(key = lambda x : fitness(x, problem_data, k), reverse=True)
|
|
|
|
loop = 0
|
|
|
|
while loop<stop:
|
|
|
|
best = fitness(population[-1], problem_data, k)
|
|
|
|
new = []
|
|
|
|
for _ in range(reproduce):
|
|
|
|
parents = random.choices(population, cum_weights=[1]*popsize, k=2)
|
|
|
|
x = random.random()
|
|
|
|
offspring = crossover(*parents)
|
|
|
|
new.append(mutation(offspring, k) if mutation_chance>x else offspring)
|
|
|
|
population = sorted(population + new, key=lambda x: fitness(x, problem_data, k), reverse=True)[-4:]
|
|
|
|
|
|
|
|
new_best = fitness(population[-1], problem_data, k)
|
|
|
|
loop = loop + 1 if best<=new_best else 0
|
|
|
|
best = new_best
|
|
|
|
|
|
|
|
return(population[-1])
|
|
|
|
|
|
|
|
ans = genetic(tasks, 2, 4, 0.2, 10, 4)
|
|
|
|
print(ans)
|
|
|
|
print(fitness(ans, tasks, 2))
|