#/bin/python import random # tasks = [4, 5, 8, 2, 10, 7] # tasks = [random.randint(1,20) for _ in range(100)] tasks = [19, 12, 12, 3, 5, 10, 2, 17, 18, 8, 20, 6, 3, 10, 6, 1, 13, 16, 17, 1, 11, 6, 12, 2, 11, 17, 8, 12, 7, 15, 1, 5, 17, 19, 5, 16, 15, 20, 7, 4, 12, 6, 17, 6, 8, 10, 8, 13, 15, 2, 6, 16, 11, 16, 16, 16, 1, 2, 17, 9, 4, 3, 7, 4, 1, 14, 16, 1, 1, 15, 20, 2, 13, 15, 15, 11, 5, 18, 1, 14, 19, 19, 19, 19, 5, 5, 12, 5, 2, 2, 2, 9, 8, 12, 6, 20, 18, 12, 12, 19] sol1=[1, 0, 1, 1, 0, 1] sol2=[0, 0, 1, 0, 1, 1] def generate_initial_population(problem_data, k, popsize): return [[random.randint(0, k-1) for _ in range(len(problem_data))] for _ in range(popsize)] def fitness(solution, problem_data, k): return max([sum(problem_data[i] for i in range(len(solution)) if solution[i] == j) for j in range(k)]) def crossover(solutionA, solutionB): return [solutionA[i] if i % 2 == 0 else solutionB[i] for i in range(len(solutionA))] def mutation(solution, k): i = random.randint(0,len(solution)-1) solution[i] = random.choice(list({i for i in range(k)} - {solution[i]})) return solution def genetic(problem_data, k, popsize, mutation_chance, stop, reproduce): population = generate_initial_population(problem_data, k, popsize) population.sort(key = lambda x : fitness(x, problem_data, k), reverse=True) loop = 0 while loopx else offspring) population = sorted(population + new, key=lambda x: fitness(x, problem_data, k), reverse=True)[-popsize:] new_best = fitness(population[-1], problem_data, k) loop = loop + 1 if best<=new_best else 0 best = new_best return(population[-1]) ans = genetic(tasks, 4, 10, 0.7, 10, 5) print(ans) print(fitness(ans, tasks, 4))