script update
This commit is contained in:
		| @@ -11,7 +11,7 @@ def generate_test_values(noise_bits, number, p_bits): | |||||||
|  |  | ||||||
|     max_noise = (1 << noise_bits) - 1  # 2^noise_bits - 1 |     max_noise = (1 << noise_bits) - 1  # 2^noise_bits - 1 | ||||||
|  |  | ||||||
|     a = [str(p * random.randint(1, 2) + random.randint(0, max_noise)) for _ in range(number)] |     a = [str(p * random.randint(1, max_noise) + random.randint(0, max_noise)) for _ in range(number)] | ||||||
|  |  | ||||||
|     return noise_bits, a, p |     return noise_bits, a, p | ||||||
|  |  | ||||||
|   | |||||||
| @@ -6,74 +6,108 @@ import tempfile | |||||||
| import os | import os | ||||||
| import numpy as np | import numpy as np | ||||||
| import matplotlib.pyplot as plt | import matplotlib.pyplot as plt | ||||||
|  | import time | ||||||
|  | import math | ||||||
| from gen_values import generate_test_file | from gen_values import generate_test_file | ||||||
|  |  | ||||||
| def run_agcd(input_file): | def run_agcd(input_file): | ||||||
|     cmd = ["./target/release/approximate-gcd", "agcd", input_file] |     cmd = ["./target/release/approximate-gcd", "agcd", input_file] | ||||||
|  |  | ||||||
|     try: |     try: | ||||||
|  |         start = time.perf_counter() | ||||||
|         result = subprocess.run(cmd, capture_output=True, text=True, check=True) |         result = subprocess.run(cmd, capture_output=True, text=True, check=True) | ||||||
|  |         duration = time.perf_counter() - start | ||||||
|         output = result.stdout |         output = result.stdout | ||||||
|  |  | ||||||
|         match = re.search(r"Recovered p: (\d+)", output) |         match = re.search(r"Recovered p: (\d+)", output) | ||||||
|         return int(match.group(1)) if match else None |         return int(match.group(1)) if match else None, duration | ||||||
|  |  | ||||||
|     except subprocess.CalledProcessError as e: |     except subprocess.CalledProcessError as e: | ||||||
|         print(f"Error running command for input_file={input_file}: {e}") |         print(f"Error running command for input_file={input_file}: {e}") | ||||||
|         return None |         return None, 0.0 | ||||||
|     except (AttributeError, ValueError) as e: |     except (AttributeError, ValueError) as e: | ||||||
|         print(f"Error parsing output for input_file={input_file}: {e}") |         print(f"Error parsing output for input_file={input_file}: {e}") | ||||||
|         return None |         return None, 0.0 | ||||||
|  |  | ||||||
| def plot_curves(noise_bits, p_bits, test_numbers, success_rates): | def plot_all(noise_bits, p_bits, test_numbers, success_rates, mean_distances, mean_times): | ||||||
|     plt.figure(figsize=(10, 6)) |     num_points = len(test_numbers) | ||||||
|     plt.plot(test_numbers, success_rates, marker='o') |     max_ticks = 20 | ||||||
|     plt.xlabel('Number of Test Values') |     step = max(1, num_points // max_ticks) | ||||||
|     plt.ylabel('Success Rate') |     xticks = list(test_numbers)[::step] | ||||||
|     plt.title(f'Success Rate vs. Number of Test Values\n(noise_bits={noise_bits}, p_bits={p_bits})') |     if test_numbers[-1] not in xticks: | ||||||
|     plt.grid(True) |         xticks.append(test_numbers[-1]) | ||||||
|     plt.ylim(-0.1, 1.1) |  | ||||||
|     plt.xticks(test_numbers) |     fig, axs = plt.subplots(3, 1, figsize=(10, 15), sharex=True) | ||||||
|     plt.savefig('success_rate_plot.png') |  | ||||||
|  |     # Success rate plot | ||||||
|  |     axs[0].plot(test_numbers, success_rates, linestyle='-') | ||||||
|  |     axs[0].set_ylabel('Success Rate') | ||||||
|  |     axs[0].set_ylim(-0.1, 1.1) | ||||||
|  |     axs[0].grid(True) | ||||||
|  |     axs[0].set_title(f'Success Rate (noise_bits={noise_bits}, p_bits={p_bits})') | ||||||
|  |  | ||||||
|  |     # Mean distance plot | ||||||
|  |     axs[1].plot(test_numbers, mean_distances, linestyle='-') | ||||||
|  |     axs[1].set_ylabel('Mean Distance to True p') | ||||||
|  |     axs[1].grid(True) | ||||||
|  |     axs[1].set_title(f'Mean Distance (noise_bits={noise_bits}, p_bits={p_bits})') | ||||||
|  |  | ||||||
|  |     # Mean runtime plot | ||||||
|  |     axs[2].plot(test_numbers, mean_times, linestyle='-') | ||||||
|  |     axs[2].set_ylabel('Mean Runtime (s)') | ||||||
|  |     axs[2].set_xlabel('Number of Test Values') | ||||||
|  |     axs[2].grid(True) | ||||||
|  |     axs[2].set_title(f'Mean Runtime (noise_bits={noise_bits}, p_bits={p_bits})') | ||||||
|  |  | ||||||
|  |     axs[2].set_xticks(xticks) | ||||||
|  |  | ||||||
|  |     fig.tight_layout() | ||||||
|  |     plt.savefig('agcd_plots.png') | ||||||
|     plt.show() |     plt.show() | ||||||
|  |  | ||||||
| def main(): | def main(): | ||||||
|     parser = argparse.ArgumentParser(description='Test AGCD with varying number of test values.') |     parser = argparse.ArgumentParser(description='Test AGCD with varying number of test values.') | ||||||
|     parser.add_argument('--noise_bits', type=int, default=0, help='Number of noise bits') |     parser.add_argument('--noise-bits', type=int, default=1, help='Number of noise bits') | ||||||
|     parser.add_argument('--p_bits', type=int, default=10000, help='Number of bits for p') |     parser.add_argument('--p-bits', type=int, default=10000, help='Number of bits for p') | ||||||
|     parser.add_argument('--min_values', type=int, default=2, help='Minimum number of test values') |     parser.add_argument('--min-values', type=int, default=2, help='Minimum number of test values') | ||||||
|     parser.add_argument('--max_values', type=int, default=100, help='Maximum number of test values') |     parser.add_argument('--max-values', type=int, default=50, help='Maximum number of test values') | ||||||
|  |     parser.add_argument('--trials', type=int, default=50, help='Number of trials per setting') | ||||||
|     args = parser.parse_args() |     args = parser.parse_args() | ||||||
|  |  | ||||||
|     noise_bits = args.noise_bits |     noise_bits = args.noise_bits | ||||||
|     p_bits = args.p_bits |     p_bits = args.p_bits | ||||||
|     test_numbers = range(args.min_values, args.max_values + 1) |     test_numbers = range(args.min_values, args.max_values + 1) | ||||||
|  |  | ||||||
|     success_rates = [] |     success_rates = [] | ||||||
|     num_trials = 100 |     mean_distances = [] | ||||||
|  |     mean_times = [] | ||||||
|  |  | ||||||
|     for num_values in test_numbers: |     for num_values in test_numbers: | ||||||
|         successes = 0 |         successes = 0 | ||||||
|         for _ in range(num_trials): |         distances = [] | ||||||
|             # Create temporary test file |         runtimes = [] | ||||||
|  |  | ||||||
|  |         for _ in range(args.trials): | ||||||
|             with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.txt') as tmp_file: |             with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.txt') as tmp_file: | ||||||
|                 true_p = generate_test_file(noise_bits, num_values, p_bits, tmp_file.name) |                 true_p = generate_test_file(noise_bits, num_values, p_bits, tmp_file.name) | ||||||
|  |             recovered_p, duration = run_agcd(tmp_file.name) | ||||||
|                 # Run AGCD |  | ||||||
|                 recovered_p = run_agcd(tmp_file.name) |  | ||||||
|  |  | ||||||
|                 # Check if recovery was successful |  | ||||||
|                 if recovered_p is not None and abs(recovered_p-true_p) <= 2000: |  | ||||||
|                     successes += 1 |  | ||||||
|  |  | ||||||
|                 # Clean up |  | ||||||
|             os.unlink(tmp_file.name) |             os.unlink(tmp_file.name) | ||||||
|  |  | ||||||
|         success_rate = successes / num_trials |             if recovered_p is not None: | ||||||
|         success_rates.append(success_rate) |                 diff = abs(recovered_p - true_p) | ||||||
|         print(f"Number of values: {num_values}, Success rate: {success_rate:.3f} ({successes}/{num_trials})") |                 threshold = math.isqrt(true_p.bit_length()) | ||||||
|  |                 if diff <= threshold: | ||||||
|  |                     successes += 1 | ||||||
|  |                     distances.append(diff) | ||||||
|  |                     runtimes.append(duration) | ||||||
|  |  | ||||||
|     # Plot the results |         success_rates.append(successes / args.trials) | ||||||
|     plot_curves(noise_bits, p_bits, test_numbers, success_rates) |         mean_distances.append(np.mean(distances) if distances else float('nan')) | ||||||
|  |         mean_times.append(np.mean(runtimes)) | ||||||
|  |  | ||||||
|  |         print(f"Values: {num_values}, Success rate: {success_rates[-1]:.3f} ({successes}/{args.trials}), " | ||||||
|  |               f"Mean distance: {mean_distances[-1]:.2f}, Mean time: {mean_times[-1]:.4f}s") | ||||||
|  |  | ||||||
|  |     plot_all(noise_bits, p_bits, list(test_numbers), success_rates, mean_distances, mean_times) | ||||||
|  |  | ||||||
| if __name__ == "__main__": | if __name__ == "__main__": | ||||||
|     main() |     main() | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user