script update
This commit is contained in:
		| @@ -11,7 +11,7 @@ def generate_test_values(noise_bits, number, p_bits): | ||||
|  | ||||
|     max_noise = (1 << noise_bits) - 1  # 2^noise_bits - 1 | ||||
|  | ||||
|     a = [str(p * random.randint(1, 2) + random.randint(0, max_noise)) for _ in range(number)] | ||||
|     a = [str(p * random.randint(1, max_noise) + random.randint(0, max_noise)) for _ in range(number)] | ||||
|  | ||||
|     return noise_bits, a, p | ||||
|  | ||||
|   | ||||
| @@ -6,74 +6,108 @@ import tempfile | ||||
| import os | ||||
| import numpy as np | ||||
| import matplotlib.pyplot as plt | ||||
| import time | ||||
| import math | ||||
| from gen_values import generate_test_file | ||||
|  | ||||
| def run_agcd(input_file): | ||||
|     cmd = ["./target/release/approximate-gcd", "agcd", input_file] | ||||
|  | ||||
|     try: | ||||
|         start = time.perf_counter() | ||||
|         result = subprocess.run(cmd, capture_output=True, text=True, check=True) | ||||
|         duration = time.perf_counter() - start | ||||
|         output = result.stdout | ||||
|  | ||||
|         match = re.search(r"Recovered p: (\d+)", output) | ||||
|         return int(match.group(1)) if match else None | ||||
|         return int(match.group(1)) if match else None, duration | ||||
|  | ||||
|     except subprocess.CalledProcessError as e: | ||||
|         print(f"Error running command for input_file={input_file}: {e}") | ||||
|         return None | ||||
|         return None, 0.0 | ||||
|     except (AttributeError, ValueError) as e: | ||||
|         print(f"Error parsing output for input_file={input_file}: {e}") | ||||
|         return None | ||||
|         return None, 0.0 | ||||
|  | ||||
| def plot_curves(noise_bits, p_bits, test_numbers, success_rates): | ||||
|     plt.figure(figsize=(10, 6)) | ||||
|     plt.plot(test_numbers, success_rates, marker='o') | ||||
|     plt.xlabel('Number of Test Values') | ||||
|     plt.ylabel('Success Rate') | ||||
|     plt.title(f'Success Rate vs. Number of Test Values\n(noise_bits={noise_bits}, p_bits={p_bits})') | ||||
|     plt.grid(True) | ||||
|     plt.ylim(-0.1, 1.1) | ||||
|     plt.xticks(test_numbers) | ||||
|     plt.savefig('success_rate_plot.png') | ||||
| def plot_all(noise_bits, p_bits, test_numbers, success_rates, mean_distances, mean_times): | ||||
|     num_points = len(test_numbers) | ||||
|     max_ticks = 20 | ||||
|     step = max(1, num_points // max_ticks) | ||||
|     xticks = list(test_numbers)[::step] | ||||
|     if test_numbers[-1] not in xticks: | ||||
|         xticks.append(test_numbers[-1]) | ||||
|  | ||||
|     fig, axs = plt.subplots(3, 1, figsize=(10, 15), sharex=True) | ||||
|  | ||||
|     # Success rate plot | ||||
|     axs[0].plot(test_numbers, success_rates, linestyle='-') | ||||
|     axs[0].set_ylabel('Success Rate') | ||||
|     axs[0].set_ylim(-0.1, 1.1) | ||||
|     axs[0].grid(True) | ||||
|     axs[0].set_title(f'Success Rate (noise_bits={noise_bits}, p_bits={p_bits})') | ||||
|  | ||||
|     # Mean distance plot | ||||
|     axs[1].plot(test_numbers, mean_distances, linestyle='-') | ||||
|     axs[1].set_ylabel('Mean Distance to True p') | ||||
|     axs[1].grid(True) | ||||
|     axs[1].set_title(f'Mean Distance (noise_bits={noise_bits}, p_bits={p_bits})') | ||||
|  | ||||
|     # Mean runtime plot | ||||
|     axs[2].plot(test_numbers, mean_times, linestyle='-') | ||||
|     axs[2].set_ylabel('Mean Runtime (s)') | ||||
|     axs[2].set_xlabel('Number of Test Values') | ||||
|     axs[2].grid(True) | ||||
|     axs[2].set_title(f'Mean Runtime (noise_bits={noise_bits}, p_bits={p_bits})') | ||||
|  | ||||
|     axs[2].set_xticks(xticks) | ||||
|  | ||||
|     fig.tight_layout() | ||||
|     plt.savefig('agcd_plots.png') | ||||
|     plt.show() | ||||
|  | ||||
| def main(): | ||||
|     parser = argparse.ArgumentParser(description='Test AGCD with varying number of test values.') | ||||
|     parser.add_argument('--noise_bits', type=int, default=0, help='Number of noise bits') | ||||
|     parser.add_argument('--p_bits', type=int, default=10000, help='Number of bits for p') | ||||
|     parser.add_argument('--min_values', type=int, default=2, help='Minimum number of test values') | ||||
|     parser.add_argument('--max_values', type=int, default=100, help='Maximum number of test values') | ||||
|     parser.add_argument('--noise-bits', type=int, default=1, help='Number of noise bits') | ||||
|     parser.add_argument('--p-bits', type=int, default=10000, help='Number of bits for p') | ||||
|     parser.add_argument('--min-values', type=int, default=2, help='Minimum number of test values') | ||||
|     parser.add_argument('--max-values', type=int, default=50, help='Maximum number of test values') | ||||
|     parser.add_argument('--trials', type=int, default=50, help='Number of trials per setting') | ||||
|     args = parser.parse_args() | ||||
|  | ||||
|     noise_bits = args.noise_bits | ||||
|     p_bits = args.p_bits | ||||
|     test_numbers = range(args.min_values, args.max_values + 1) | ||||
|  | ||||
|     success_rates = [] | ||||
|     num_trials = 100 | ||||
|     mean_distances = [] | ||||
|     mean_times = [] | ||||
|  | ||||
|     for num_values in test_numbers: | ||||
|         successes = 0 | ||||
|         for _ in range(num_trials): | ||||
|             # Create temporary test file | ||||
|         distances = [] | ||||
|         runtimes = [] | ||||
|  | ||||
|         for _ in range(args.trials): | ||||
|             with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.txt') as tmp_file: | ||||
|                 true_p = generate_test_file(noise_bits, num_values, p_bits, tmp_file.name) | ||||
|             recovered_p, duration = run_agcd(tmp_file.name) | ||||
|             os.unlink(tmp_file.name) | ||||
|  | ||||
|                 # Run AGCD | ||||
|                 recovered_p = run_agcd(tmp_file.name) | ||||
|  | ||||
|                 # Check if recovery was successful | ||||
|                 if recovered_p is not None and abs(recovered_p-true_p) <= 2000: | ||||
|             if recovered_p is not None: | ||||
|                 diff = abs(recovered_p - true_p) | ||||
|                 threshold = math.isqrt(true_p.bit_length()) | ||||
|                 if diff <= threshold: | ||||
|                     successes += 1 | ||||
|                     distances.append(diff) | ||||
|                     runtimes.append(duration) | ||||
|  | ||||
|                 # Clean up | ||||
|                 os.unlink(tmp_file.name) | ||||
|         success_rates.append(successes / args.trials) | ||||
|         mean_distances.append(np.mean(distances) if distances else float('nan')) | ||||
|         mean_times.append(np.mean(runtimes)) | ||||
|  | ||||
|         success_rate = successes / num_trials | ||||
|         success_rates.append(success_rate) | ||||
|         print(f"Number of values: {num_values}, Success rate: {success_rate:.3f} ({successes}/{num_trials})") | ||||
|         print(f"Values: {num_values}, Success rate: {success_rates[-1]:.3f} ({successes}/{args.trials}), " | ||||
|               f"Mean distance: {mean_distances[-1]:.2f}, Mean time: {mean_times[-1]:.4f}s") | ||||
|  | ||||
|     # Plot the results | ||||
|     plot_curves(noise_bits, p_bits, test_numbers, success_rates) | ||||
|     plot_all(noise_bits, p_bits, list(test_numbers), success_rates, mean_distances, mean_times) | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     main() | ||||
|   | ||||
		Reference in New Issue
	
	Block a user