script update

This commit is contained in:
Sam Hadow 2025-05-25 18:45:09 +02:00
parent 7f6e9dd10d
commit b52ac6313a
2 changed files with 68 additions and 34 deletions

View File

@ -11,7 +11,7 @@ def generate_test_values(noise_bits, number, p_bits):
max_noise = (1 << noise_bits) - 1 # 2^noise_bits - 1
a = [str(p * random.randint(1, 2) + random.randint(0, max_noise)) for _ in range(number)]
a = [str(p * random.randint(1, max_noise) + random.randint(0, max_noise)) for _ in range(number)]
return noise_bits, a, p

View File

@ -6,74 +6,108 @@ import tempfile
import os
import numpy as np
import matplotlib.pyplot as plt
import time
import math
from gen_values import generate_test_file
def run_agcd(input_file):
cmd = ["./target/release/approximate-gcd", "agcd", input_file]
try:
start = time.perf_counter()
result = subprocess.run(cmd, capture_output=True, text=True, check=True)
duration = time.perf_counter() - start
output = result.stdout
match = re.search(r"Recovered p: (\d+)", output)
return int(match.group(1)) if match else None
return int(match.group(1)) if match else None, duration
except subprocess.CalledProcessError as e:
print(f"Error running command for input_file={input_file}: {e}")
return None
return None, 0.0
except (AttributeError, ValueError) as e:
print(f"Error parsing output for input_file={input_file}: {e}")
return None
return None, 0.0
def plot_curves(noise_bits, p_bits, test_numbers, success_rates):
plt.figure(figsize=(10, 6))
plt.plot(test_numbers, success_rates, marker='o')
plt.xlabel('Number of Test Values')
plt.ylabel('Success Rate')
plt.title(f'Success Rate vs. Number of Test Values\n(noise_bits={noise_bits}, p_bits={p_bits})')
plt.grid(True)
plt.ylim(-0.1, 1.1)
plt.xticks(test_numbers)
plt.savefig('success_rate_plot.png')
def plot_all(noise_bits, p_bits, test_numbers, success_rates, mean_distances, mean_times):
num_points = len(test_numbers)
max_ticks = 20
step = max(1, num_points // max_ticks)
xticks = list(test_numbers)[::step]
if test_numbers[-1] not in xticks:
xticks.append(test_numbers[-1])
fig, axs = plt.subplots(3, 1, figsize=(10, 15), sharex=True)
# Success rate plot
axs[0].plot(test_numbers, success_rates, linestyle='-')
axs[0].set_ylabel('Success Rate')
axs[0].set_ylim(-0.1, 1.1)
axs[0].grid(True)
axs[0].set_title(f'Success Rate (noise_bits={noise_bits}, p_bits={p_bits})')
# Mean distance plot
axs[1].plot(test_numbers, mean_distances, linestyle='-')
axs[1].set_ylabel('Mean Distance to True p')
axs[1].grid(True)
axs[1].set_title(f'Mean Distance (noise_bits={noise_bits}, p_bits={p_bits})')
# Mean runtime plot
axs[2].plot(test_numbers, mean_times, linestyle='-')
axs[2].set_ylabel('Mean Runtime (s)')
axs[2].set_xlabel('Number of Test Values')
axs[2].grid(True)
axs[2].set_title(f'Mean Runtime (noise_bits={noise_bits}, p_bits={p_bits})')
axs[2].set_xticks(xticks)
fig.tight_layout()
plt.savefig('agcd_plots.png')
plt.show()
def main():
parser = argparse.ArgumentParser(description='Test AGCD with varying number of test values.')
parser.add_argument('--noise_bits', type=int, default=0, help='Number of noise bits')
parser.add_argument('--p_bits', type=int, default=10000, help='Number of bits for p')
parser.add_argument('--min_values', type=int, default=2, help='Minimum number of test values')
parser.add_argument('--max_values', type=int, default=100, help='Maximum number of test values')
parser.add_argument('--noise-bits', type=int, default=1, help='Number of noise bits')
parser.add_argument('--p-bits', type=int, default=10000, help='Number of bits for p')
parser.add_argument('--min-values', type=int, default=2, help='Minimum number of test values')
parser.add_argument('--max-values', type=int, default=50, help='Maximum number of test values')
parser.add_argument('--trials', type=int, default=50, help='Number of trials per setting')
args = parser.parse_args()
noise_bits = args.noise_bits
p_bits = args.p_bits
test_numbers = range(args.min_values, args.max_values + 1)
success_rates = []
num_trials = 100
mean_distances = []
mean_times = []
for num_values in test_numbers:
successes = 0
for _ in range(num_trials):
# Create temporary test file
distances = []
runtimes = []
for _ in range(args.trials):
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.txt') as tmp_file:
true_p = generate_test_file(noise_bits, num_values, p_bits, tmp_file.name)
recovered_p, duration = run_agcd(tmp_file.name)
os.unlink(tmp_file.name)
# Run AGCD
recovered_p = run_agcd(tmp_file.name)
# Check if recovery was successful
if recovered_p is not None and abs(recovered_p-true_p) <= 2000:
if recovered_p is not None:
diff = abs(recovered_p - true_p)
threshold = math.isqrt(true_p.bit_length())
if diff <= threshold:
successes += 1
distances.append(diff)
runtimes.append(duration)
# Clean up
os.unlink(tmp_file.name)
success_rates.append(successes / args.trials)
mean_distances.append(np.mean(distances) if distances else float('nan'))
mean_times.append(np.mean(runtimes))
success_rate = successes / num_trials
success_rates.append(success_rate)
print(f"Number of values: {num_values}, Success rate: {success_rate:.3f} ({successes}/{num_trials})")
print(f"Values: {num_values}, Success rate: {success_rates[-1]:.3f} ({successes}/{args.trials}), "
f"Mean distance: {mean_distances[-1]:.2f}, Mean time: {mean_times[-1]:.4f}s")
# Plot the results
plot_curves(noise_bits, p_bits, test_numbers, success_rates)
plot_all(noise_bits, p_bits, list(test_numbers), success_rates, mean_distances, mean_times)
if __name__ == "__main__":
main()