simulation wrapper, response time depending on arrival rate plot

This commit is contained in:
2025-03-17 18:51:03 +01:00
parent 98cff0ae47
commit 52cbed1ec4

View File

@@ -1,6 +1,7 @@
#!/bin/python3 #!/bin/python3
import random import random
from heapq import heappush, heappop from heapq import heappush, heappop
import matplotlib.pyplot as plt
class Event: class Event:
def __init__(self, event_type, request): def __init__(self, event_type, request):
@@ -56,7 +57,7 @@ class Simulation:
self.total_requests += 1 self.total_requests += 1
if len(self.router_queue) == 0 and self.router_state == "idle": if len(self.router_queue) == 0 and self.router_state == "idle":
self.router_process(request) self.router_process(request)
elif ((len(self.router_queue) + + (self.router_state == "processing")) < 100): elif ((len(self.router_queue) + (self.router_state == "processing")) < 100):
self.router_queue.append(request) self.router_queue.append(request)
else: else:
self.lost_requests += 1 self.lost_requests += 1
@@ -128,6 +129,44 @@ class Simulation:
def simulation_wrapper():
C_values = [1, 2, 3, 6]
simulation_time = 10000
lambda_vals = [l / 100 for l in range(1, 301)]
plt.figure(figsize=(10, 6))
for c in C_values:
lambda_values = []
mean_response_times = []
print(f"Processing C={c}...")
for lambda_val in lambda_vals:
try:
sim = Simulation(c, lambda_val)
sim.run(simulation_time)
if not sim.response_times:
print(f"No completed requests for C={c}, λ={lambda_val:.2f}")
continue
mean_rt = sum(sim.response_times) / len(sim.response_times)
lambda_values.append(lambda_val)
mean_response_times.append(mean_rt)
print(f"C={c}, λ={lambda_val:.2f}, Mean RT={mean_rt:.2f}, Loss Rate={sim.loss_rate:.2%}")
except ValueError as e:
print(f"Stopped at λ={lambda_val:.2f} for C={c}: {str(e)}")
break
plt.plot(lambda_values, mean_response_times, marker='.', linestyle='-', label=f'C={c}')
plt.xlabel('Arrival Rate (λ)')
plt.ylabel('Mean Response Time')
plt.title('Mean Response Time depending on Arrival Rate for different configurations of C (number of clusters)')
plt.legend()
plt.grid(True)
plt.show()