parallelize runs

This commit is contained in:
2025-03-24 16:59:32 +01:00
parent cea4edd073
commit 29ea7b229e

View File

@@ -1,9 +1,12 @@
#!/bin/python3 #!/bin/python3
import random import random
import os
import time
from heapq import heappush, heappop from heapq import heappush, heappop
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
from scipy.stats import t from scipy.stats import t
import numpy as np import numpy as np
from multiprocessing import Pool
class Event: class Event:
def __init__(self, event_type, request): def __init__(self, event_type, request):
@@ -131,10 +134,26 @@ class Simulation:
def run_single_simulation(args):
c, lambda_val, simulation_time = args
# for different seed in each process
random.seed(time.time() + os.getpid())
try:
sim = Simulation(c, lambda_val)
sim.run(simulation_time)
if len(sim.response_times) > 0:
run_mean = sum(sim.response_times) / len(sim.response_times)
loss_rate = sim.loss_rate
return (run_mean, loss_rate)
else:
return None
except ValueError: # Loss rate too high
return None
def simulation_wrapper(): def simulation_wrapper():
C_values = [1, 2, 3, 6] C_values = [1, 2, 3, 6]
simulation_time = 1000 simulation_time = 1000
num_runs = 10 num_runs = 12
min_runs = 5 min_runs = 5
confidence_level = 0.95 confidence_level = 0.95
@@ -142,6 +161,7 @@ def simulation_wrapper():
plt.figure(figsize=(12, 8)) plt.figure(figsize=(12, 8))
with Pool() as pool: # pool of workers
for c in C_values: for c in C_values:
lambda_points = [] lambda_points = []
means = [] means = []
@@ -150,22 +170,14 @@ def simulation_wrapper():
print(f"\nProcessing C={c}") print(f"\nProcessing C={c}")
for lambda_val in lambda_vals: for lambda_val in lambda_vals:
run_results = []
loss_rates = []
# run num_runs simulation for each lambda # run num_runs simulation for each lambda
for _ in range(num_runs): args_list = [(c, lambda_val, simulation_time) for _ in range(num_runs)]
try: results = pool.map(run_single_simulation, args_list)
sim = Simulation(c, lambda_val)
sim.run(simulation_time)
if len(sim.response_times) > 0: # collect results from successful simulations
run_mean = sum(sim.response_times)/len(sim.response_times) successful_results = [res for res in results if res is not None]
run_results.append(run_mean) run_results = [res[0] for res in successful_results]
loss_rates.append(sim.loss_rate) loss_rates = [res[1] for res in successful_results]
except ValueError: # lossrate too high
continue
# reject if not enough successful run # reject if not enough successful run
if len(run_results) >= min_runs: if len(run_results) >= min_runs:
@@ -207,5 +219,6 @@ def simulation_wrapper():
plt.show() plt.show()
if __name__ == '__main__':
simulation_wrapper()