metaheuristic/main.py
2024-10-16 11:09:03 +02:00

72 lines
2.5 KiB
Python

#/bin/python
# edges = [[None, 6, 9, 18, None],
# [6, None, 2, None, 8],
# [9, 2, None, 0, None],
# [18, None, 0, None, 12],
# [None, 8, None, 12, None]]
costs = {"x1":6, "x2":9, "x3":18, "x4":2, "x5":0, "x6":8, "x7":12}
solution = {"x1":1, "x2":0, "x3":0, "x4":1, "x5":1, "x6":1, "x7":0}
def check_constraint(solution):
penalty = 0
if solution["x1"] and not solution["x3"]:
penalty += 50
if solution["x1"] + solution["x2"] + solution["x6"] > 1:
penalty +=50
return penalty
def check_validity(solution):
return (sum(solution.values()) == 4) and not ((solution["x1"] and solution["x2"] and solution["x4"]) or (solution["x2"] and solution["x3"] and solution["x5"]) or (solution["x4"] and solution["x5"] and solution["x7"] and solution["x6"]) or (solution["x1"] and solution["x3"] and solution["x6"] and solution["x7"]) or (solution["x1"] and solution["x3"] and solution["x4"] and solution["x5"]))
def neighbors(solution):
neighbors = list()
dict_0 = {k: v for k, v in solution.items() if v == 0}
dict_1 = {k: v for k, v in solution.items() if v == 1}
for i in dict_0.keys():
for j in dict_1.keys():
copy = solution.copy()
copy[i]=1
copy[j]=0
neighbors.append(copy)
return neighbors
def calculate_cost(solution):
return check_constraint(solution) + sum(costs[key] for key in solution if solution[key] == 1)
def tabu_search(initial_solution, n_max):
solution = initial_solution
best = initial_solution
cost = calculate_cost(initial_solution)
cost_best = cost
tabu = [solution,]
n = 0
while n <= n_max:
neighbors_list = []
for s in neighbors(solution):
if check_validity(s) and s not in tabu:
neighbors_list.append((s, calculate_cost(s)))
new = min(neighbors_list, key=lambda x: x[1])
if cost - new[1] >= 0:
n = 0
solution = new[0]
cost = new[1]
if cost_best - new[1] >= 0:
best = new[0]
cost_best = new[1]
else:
solution = new[0]
cost = new[1]
n += 1
tabu.append(solution)
return (best, cost_best)
print("when not degrading the current solution:")
print(tabu_search(solution, 0))
print("tabu search accepting 1 degradation:")
print(tabu_search(solution, 1))
print("tabu search accepting 2 degradations:")
print(tabu_search(solution, 2))