genetic algorithm implementation
This commit is contained in:
parent
3b4bc26cff
commit
1a46936216
@ -18,3 +18,27 @@ def mutation(solution, k):
|
||||
i = random.randint(0,len(solution)-1)
|
||||
solution[i] = random.choice(list({i for i in range(k)} - {solution[i]}))
|
||||
return solution
|
||||
|
||||
def genetic(problem_data, k, popsize, mutation_chance, stop, reproduce):
|
||||
population = generate_initial_population(problem_data, k, popsize)
|
||||
population.sort(key = lambda x : fitness(x, problem_data, k), reverse=True)
|
||||
loop = 0
|
||||
while loop<stop:
|
||||
best = fitness(population[-1], problem_data, k)
|
||||
new = []
|
||||
for _ in range(reproduce):
|
||||
parents = random.choices(population, cum_weights=[1]*popsize, k=2)
|
||||
x = random.random()
|
||||
offspring = crossover(*parents)
|
||||
new.append(mutation(offspring, k) if mutation_chance>x else offspring)
|
||||
population = sorted(population + new, key=lambda x: fitness(x, problem_data, k), reverse=True)[-4:]
|
||||
|
||||
new_best = fitness(population[-1], problem_data, k)
|
||||
loop = loop + 1 if best<=new_best else 0
|
||||
best = new_best
|
||||
|
||||
return(population[-1])
|
||||
|
||||
ans = genetic(tasks, 2, 4, 0.2, 10, 4)
|
||||
print(ans)
|
||||
print(fitness(ans, tasks, 2))
|
||||
|
Loading…
x
Reference in New Issue
Block a user