Upload files to ''

This commit is contained in:
sam.hadow 2023-05-25 02:47:12 +02:00
parent 5c97db3496
commit 98aa221856

View File

@ -1,122 +1,140 @@
import unittest #
from src.Sommets import * # Sam Hadow - Huffman-py
from src.Arbre import * # Copyright (C) 2023
from src.fonctions.encode import * #
from src.fonctions.decode import * # This program is free software: you can redistribute it and/or modify
from src.fonctions.occurence import * # it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# pour lancer les tests utilisez: import unittest
from huffman_py.Node import *
from huffman_py.Tree import *
from huffman_py.functions.encode import *
from huffman_py.functions.decode import *
from huffman_py.functions.occurence import *
# Tu run unit tests:
# python -m unittest discover # python -m unittest discover
class TestUtils(unittest.TestCase): class TestUtils(unittest.TestCase):
def test_Arbre_id(self): def test_Tree_id(self):
a = Sommets(10, 'a') a = Node(10, 'a')
b = Sommets(8,'b') b = Node(8,'b')
r1 = Sommets(18,'',left=b,right=a) r1 = Node(18,'',left=b,right=a)
arbre1 = Arbre(r1) tree1 = Tree(r1)
# vérification affectation d'un identifiant unique en créant l'arbre # unique identifier check
liste_id = [] id_list = []
verification_id = True check_id = True
for elem in arbre1.sommets: for elem in tree1.nodes:
liste_id.append(elem.identifiant) id_list.append(elem.identifier)
if len(liste_id) > len(set(liste_id)): if len(id_list) > len(set(id_list)):
verification_id = False check_id = False
self.assertTrue(verification_id) self.assertTrue(check_id)
def test_Arbre_fusion(self): def test_Tree_fusion(self):
# fusion des arbres # tree merge
# on doit retrouver les éléments des 2 arbres + une nouvelle racine # we must find elements in initial trees + a root
# les identifiants doivent toujours être uniques # identifiers must be unique
a = Sommets(10, 'a') a = Node(10, 'a')
b = Sommets(8,'b') b = Node(8,'b')
r1 = Sommets(18,'',left=b,right=a) r1 = Node(18,'',left=b,right=a)
c = Sommets(15, 'c') c = Node(15, 'c')
d = Sommets(20,'d') d = Node(20,'d')
r2 = Sommets(18,'',left=d,right=c) r2 = Node(18,'',left=d,right=c)
arbre1 = Arbre(r1) tree1 = Tree(r1)
arbre2 = Arbre(r2) tree2 = Tree(r2)
l1 = len(arbre1.sommets) l1 = len(tree1.nodes)
l2 = len(arbre2.sommets) l2 = len(tree2.nodes)
arbre1 += arbre2 tree1 += tree2
verification_fusion = True check_fusion = True
if l1+l2+1 != len(arbre1.sommets): if l1+l2+1 != len(tree1.nodes):
verification_fusion = False check_fusion = False
liste_id2 = [] id_list2 = []
verification_id2 = True check_id2 = True
for elem in arbre1.sommets: for elem in tree1.nodes:
liste_id2.append(elem.identifiant) id_list2.append(elem.identifier)
if len(liste_id2) > len(set(liste_id2)): if len(id_list2) > len(set(id_list2)):
verification_id2 = False check_id2 = False
self.assertTrue(verification_fusion) self.assertTrue(check_fusion)
self.assertTrue(verification_id2) self.assertTrue(check_id2)
def test_Arbre_recherche(self): def test_Tree_seek(self):
# recherche de sommet # seek a node
a = Sommets(10, 'a') a = Node(10, 'a')
b = Sommets(8,'b') b = Node(8,'b')
r1 = Sommets(18,'',left=b,right=a) r1 = Node(18,'',left=b,right=a)
arbre1 = Arbre(r1) tree1 = Tree(r1)
self.assertEqual(arbre1.recherche(a),a) self.assertEqual(tree1.seek(a),a)
self.assertNotEqual(arbre1.recherche(b),a) self.assertNotEqual(tree1.seek(b),a)
def test_Arbre_suppression(self): def test_Tree_delete(self):
a = Sommets(10, 'a') a = Node(10, 'a')
b = Sommets(8,'b') b = Node(8,'b')
r1 = Sommets(18,'',left=b,right=a) r1 = Node(18,'',left=b,right=a)
r2 = Sommets(18,'',left=None,right=r1) r2 = Node(18,'',left=None,right=r1)
arbre1 = Arbre(r2) tree1 = Tree(r2)
arbre1 -= r1 tree1 -= r1
self.assertEqual(arbre1.recherche(a),None) self.assertEqual(tree1.seek(a),None)
self.assertEqual(arbre1.recherche(b),None) self.assertEqual(tree1.seek(b),None)
self.assertEqual(arbre1.recherche(r1),None) self.assertEqual(tree1.seek(r1),None)
self.assertEqual(arbre1.recherche(r2),r2) self.assertEqual(tree1.seek(r2),r2)
def test_occurences(self): def test_occurences(self):
o1 = calcul_occurence('aaabcc') o1 = calcul_occurence('aaabcc')
o2 = calcul_occurence('bacaac') o2 = calcul_occurence('bacaac')
# dans les 2 cas on doit avoir le même dictionnaire # Same dictionary in both case
# 3 pour a, 2 pour c, 1 pour b # 3 for a, 2 for c, 1 for b
self.assertEqual(o1,o2) self.assertEqual(o1,o2)
self.assertEqual(o1['c'],2) self.assertEqual(o1['c'],2)
self.assertEqual(o1['b'],1) self.assertEqual(o1['b'],1)
self.assertEqual(o1['a'],3) self.assertEqual(o1['a'],3)
def test_encodage_huffman(self): def test_huffman_encode(self):
string = 'mouton' string = 'sheep'
string2 = 'vache' string2 = 'cow'
(encodedOutput, racine, huffmanEncoding) = huffman_encode(string) (encodedOutput, root, huffmanEncoding) = huffman_encode(string)
(encodedOutput2, racine2, huffmanEncoding2) = huffman_encode(string2) (encodedOutput2, root2, huffmanEncoding2) = huffman_encode(string2)
# l'encodage doit être différent (les dictionnaires et arbres aussi) # encoding must be different
self.assertNotEqual(huffmanEncoding, huffmanEncoding2) self.assertNotEqual(huffmanEncoding, huffmanEncoding2)
self.assertNotEqual(encodedOutput, encodedOutput2) self.assertNotEqual(encodedOutput, encodedOutput2)
self.assertNotEqual(Arbre(racine),Arbre(racine2)) self.assertNotEqual(Tree(root),Tree(root2))
def test_decodage_huffman(self): def test_decodage_huffman(self):
string = 'chèvre' string = 'chicken'
(encodedOutput, racine, huffmanEncoding) = huffman_encode(string) (encodedOutput, root, huffmanEncoding) = huffman_encode(string)
# on doit être capable de décoder avec la racine de l'arbre ou avec le dictionnaire # We must be able to decode a binary from its tree root/dict
self.assertEqual(string,huffman_decode(encodedOutput,racine)) self.assertEqual(string,huffman_decode(encodedOutput,root))
self.assertEqual(string,decode_from_dico(encodedOutput,huffmanEncoding)) self.assertEqual(string,decode_from_dict(encodedOutput,huffmanEncoding))
# on doit être capable de détecter si le dictionnaire/arbre n'est pas celui correspondant à un texte encodé # we must be able to detect if tree/dict isn't the correct one to decode a binary
string2 = 'poule' string2 = 'pig'
(encodedOutput2, racine2, huffmanEncoding2) = huffman_encode(string2) (encodedOutput2, root2, huffmanEncoding2) = huffman_encode(string2)
with self.assertRaises(ValueError): with self.assertRaises(ValueError):
decode_from_dico(encodedOutput2,huffmanEncoding) decode_from_dict(encodedOutput2,huffmanEncoding)
with self.assertRaises(ValueError): with self.assertRaises(ValueError):
huffman_decode(encodedOutput2,racine) huffman_decode(encodedOutput2,root)
if __name__ == '__main__': if __name__ == '__main__':