Files
haskell-math/TonelliShanks.hs
2025-10-24 10:21:46 +02:00

52 lines
1.5 KiB
Haskell

module TonelliShanks (tonelliShanks) where
import ModularArithmeticUtils (modExp, modMul, legendre)
-- Factor p-1 as q * 2^s, where q is odd
factorOutTwos :: Integer -> (Integer, Integer)
factorOutTwos n = go n 0
where
go x s
| even x = go (x `div` 2) (s + 1)
| otherwise = (x, s)
-- Tonelli-Shanks algorithm: find x such that x^2 = n (mod p)
-- Returns Just x if it exists, Nothing otherwise.
tonelliShanks :: Integer -> Integer -> Maybe Integer
tonelliShanks n p
| legendre n p /= 1 = Nothing -- no square root
| p == 2 = Just n -- special case
| otherwise = Just x
where
(q, s) = factorOutTwos (p - 1)
-- find z which is a quadratic non-residue mod p
z = head [z' | z' <- [2..p-1], legendre z' p == p - 1]
m0 = s
c0 = modExp z q p
t0 = modExp n q p
r0 = modExp n ((q + 1) `div` 2) p
(x, _, _) = loop m0 c0 t0 r0
loop :: Integer -> Integer -> Integer -> Integer -> (Integer, Integer, Integer)
loop m c t r
| t == 0 = (0, c, t)
| t == 1 = (r, c, t)
| otherwise =
let
i = smallestI 0 t m
b = modExp c (2 ^ (m - i - 1)) p
m' = i
c' = modMul b b p
t' = modMul t c' p
r' = modMul r b p
in loop m' c' t' r'
-- find smallest i (0 <= i < m) such that t^(2^i) = 1 mod p
smallestI i t m
| i >= m = error "no valid i found"
| modExp t (2 ^ i) p == 1 = i
| otherwise = smallestI (i + 1) t m