start restructuring project

This commit is contained in:
2026-01-10 13:23:43 +01:00
parent 5dfcc79927
commit 1bd58d27d7
11 changed files with 25 additions and 17 deletions

View File

@@ -0,0 +1,43 @@
import Text.Read (readMaybe)
import System.Exit (exitSuccess)
import Utils (askNumber)
import ModularArithmeticUtils (modExp)
main :: IO ()
main = do
n <- askNumber "Enter an integer n>1 to factor:"
b <- askNumber "Enter the bound B:"
putStrLn ("n = " ++ show n)
case pollardP1 n b of
Just factor -> do
putStrLn ("Found factor: " ++ show factor)
let otherFactor = n `div` factor
putStrLn ("Other factor: " ++ show otherFactor)
Nothing -> do
putStrLn "Failed to find a factor using Pollard p-1 method. n could be prime or different parameters needed."
-- Pollard p-1 factorization algorithm
pollardP1 :: Integer -> Integer -> Maybe Integer
pollardP1 n b = tryBases [2..5]
where
tryBases [] = Nothing
tryBases (a:as) =
case pollardP1WithParams n a b of
Just factor -> Just factor
Nothing -> tryBases as
-- Pollard p-1 with configurable parameters
pollardP1WithParams :: Integer -> Integer -> Integer -> Maybe Integer
pollardP1WithParams n a b = go a 2
where
go currentA k
| k > b = Nothing -- Bound exceeded, failed to find factor
| otherwise =
let newA = modExp currentA k n
d = gcd (newA - 1) n
in if d > 1 && d < n
then Just d -- Found a non-trivial factor
else if d == n
then Nothing -- Found n itself, try with different parameters
else go newA (k + 1)

View File

@@ -0,0 +1,24 @@
import Text.Read (readMaybe)
import System.Exit (exitSuccess)
import Utils (askNumber)
main :: IO ()
main = do
n <- askNumber "Enter an integer:"
let (d, root) = findIntegerSqrt n
q = (root - d)
p = (root + d)
putStrLn ("n = " ++ show n)
putStrLn ("Found d = " ++ show d ++ ", sqrt(n + d^2) = " ++ show root)
putStrLn ("q = " ++ show q ++ ", p = " ++ show p)
-- Find the smallest integer d >= 0 such that sqrt(n + d^2) is an integer
findIntegerSqrt :: Integer -> (Integer, Integer)
findIntegerSqrt n = go 0
where
go d =
let val = n + d*d
root = floor (sqrt (fromIntegral val))
in if root * root == val
then (d, root)
else go (d + 1)

View File

@@ -0,0 +1,60 @@
module ModularArithmeticUtils (modExp, modMul, legendre, factorOutTwos, jacobi) where
import Data.Bits (testBit, shiftR)
-- Modular exponentiation: compute a^b mod m
modExp :: Integer -> Integer -> Integer -> Integer
modExp b 0 m = 1
modExp b e m = t * modExp ((b * b) `mod` m) (shiftR e 1) m `mod` m
where t = if testBit e 0 then b `mod` m else 1
-- Compute (a * b) mod m
modMul :: Integer -> Integer -> Integer -> Integer
modMul a b m = (a * b) `mod` m
-- Compute the Legendre symbol (a/p)
-- (a/p) = a^((p-1)/2) mod p
-- (a/p) in {-1, 0, 1}
legendre :: Integer -> Integer -> Integer
legendre a p = modExp a ((p - 1) `div` 2) p
-- Factor p-1 as q * 2^s, where q is odd
factorOutTwos :: Integer -> (Integer, Integer)
factorOutTwos n = go n 0
where
go x s
| even x = go (x `div` 2) (s + 1)
| otherwise = (x, s)
-- jacobi symbol (a/n)
-- (a/n) in {-1, 0, 1}
jacobi :: Integer -> Integer -> Integer
jacobi a n
| n <= 0 = error "jacobi: n must be positive"
| even n = error "jacobi: n must be odd"
| a `mod` n == 0 = 0
| otherwise = go (a `mod` n) n 1
where
go :: Integer -> Integer -> Integer -> Integer
go 0 _ _ = 0
go 1 _ s = s
go x m s =
let (xOdd, e) = factorOutTwos x
s' = if even e then s else s * jacobi2 m
in
if xOdd == 1
then s'
else
let s'' = if (xOdd `mod` 4 == 3) && (m `mod` 4 == 3) then -s' else s'
xNext = m `mod` xOdd
in go xNext xOdd s''
-- Jacobi(2, m), helper function
jacobi2 :: Integer -> Integer
jacobi2 m =
case m `mod` 8 of
1 -> 1
7 -> 1
3 -> -1
5 -> -1
_ -> error "jacobi2: unexpected (m mod 8) for odd m"

View File

@@ -0,0 +1,17 @@
module Primes.FermatPrimeTest (fermatPrimeTest) where
import System.Random (randomRIO)
import ModularArithmeticUtils (modExp)
fermatPrimeTest :: Integer -> Integer -> IO Bool
fermatPrimeTest n k
| n <= 3 = return (n == 2 || n == 3)
| even n = return False
| otherwise = go k
where
go 0 = return True
go i = do
a <- randomRIO (2, n - 2)
if modExp a (n - 1) n /= 1
then return False
else go (i - 1)

30
src/Primes/MillerRabin.hs Normal file
View File

@@ -0,0 +1,30 @@
module Primes.MillerRabin (millerRabin) where
import System.Random (randomRIO)
import ModularArithmeticUtils (modExp, factorOutTwos)
millerRabinWitness :: Integer -> Integer -> Integer -> Integer -> Bool
millerRabinWitness n a d s =
let x0 = modExp a d n
in x0 == 1 || x0 == n - 1 || loop x0 (s - 1)
where
loop _ 0 = False
loop x r =
let x' = (x * x) `mod` n
in x' == n - 1 || loop x' (r - 1)
millerRabin :: Integer -> Integer -> IO Bool
millerRabin n k
| n < 2 = return False
| n == 2 = return True
| even n = return False
| otherwise = do
let (d, s) = factorOutTwos (n - 1)
go k d s
where
go 0 _ _ = return True
go i d s = do
a <- randomRIO (2, n - 2)
if millerRabinWitness n a d s
then go (i - 1) d s
else return False

View File

@@ -0,0 +1,28 @@
module Primes.SoloveyStrassen (soloveyStrassen) where
import ModularArithmeticUtils (modExp, jacobi)
import System.Random (randomRIO)
soloveyStrassen :: Integer -> Integer -> IO Bool
soloveyStrassen n k
| n < 2 = return False
| n == 2 = return True
| even n = return False
| otherwise = go k
where
expHalf = (n - 1) `div` 2
go 0 = return True
go i = do
a <- randomRIO (2, n - 2)
if gcd a n /= 1
then return False
else do
let x = modExp a expHalf n
j = jacobi a n `mod` n
if x /= j
then return False
else go (i - 1)

43
src/TonelliShanks.hs Normal file
View File

@@ -0,0 +1,43 @@
module TonelliShanks (tonelliShanks) where
import ModularArithmeticUtils (modExp, modMul, legendre, factorOutTwos)
-- Tonelli-Shanks algorithm: find x such that x^2 = n (mod p)
-- Returns Just x if it exists, Nothing otherwise.
tonelliShanks :: Integer -> Integer -> Maybe Integer
tonelliShanks n p
| legendre n p /= 1 = Nothing -- no square root
| p == 2 = Just n -- special case
| otherwise = Just x
where
(q, s) = factorOutTwos (p - 1)
-- find z which is a quadratic non-residue mod p
z = head [z' | z' <- [2..p-1], legendre z' p == p - 1]
m0 = s
c0 = modExp z q p
t0 = modExp n q p
r0 = modExp n ((q + 1) `div` 2) p
(x, _, _) = loop m0 c0 t0 r0
loop :: Integer -> Integer -> Integer -> Integer -> (Integer, Integer, Integer)
loop m c t r
| t == 0 = (0, c, t)
| t == 1 = (r, c, t)
| otherwise =
let
i = smallestI 0 t m
b = modExp c (2 ^ (m - i - 1)) p
m' = i
c' = modMul b b p
t' = modMul t c' p
r' = modMul r b p
in loop m' c' t' r'
-- find smallest i (0 <= i < m) such that t^(2^i) = 1 mod p
smallestI i t m
| i >= m = error "no valid i found"
| modExp t (2 ^ i) p == 1 = i
| otherwise = smallestI (i + 1) t m

15
src/Utils.hs Normal file
View File

@@ -0,0 +1,15 @@
module Utils (askNumber) where
import Text.Read (readMaybe)
import System.Exit (exitSuccess)
-- Ask user for an integer > 1, or exit on invalid input
askNumber :: String -> IO Integer
askNumber s = do
putStrLn s
input <- getLine
case readMaybe input of
Just n | n > 1 -> return n
_ -> do
putStrLn "Not a valid integer"
exitSuccess