#/bin/python import random tasks = [4, 5, 8, 2, 10, 7] sol1=[1, 0, 1, 1, 0, 1] sol2=[0, 0, 1, 0, 1, 1] def generate_initial_population(problem_data, k, popsize): return [[random.randint(0, k-1) for _ in range(len(problem_data))] for _ in range(popsize)] def fitness(solution, problem_data, k): return max([sum(problem_data[i] for i in range(len(solution)) if solution[i] == j) for j in range(k)]) def crossover(solutionA, solutionB): return [solutionA[i] if i % 2 == 0 else solutionB[i] for i in range(len(solutionA))] def mutation(solution, k): i = random.randint(0,len(solution)-1) solution[i] = random.choice(list({i for i in range(k)} - {solution[i]})) return solution