diff --git a/genetic-algorithm.py b/genetic-algorithm.py index 928211f..28f9bc9 100644 --- a/genetic-algorithm.py +++ b/genetic-algorithm.py @@ -1,7 +1,9 @@ #/bin/python import random -tasks = [4, 5, 8, 2, 10, 7] +# tasks = [4, 5, 8, 2, 10, 7] +# tasks = [random.randint(1,20) for _ in range(100)] +tasks = [19, 12, 12, 3, 5, 10, 2, 17, 18, 8, 20, 6, 3, 10, 6, 1, 13, 16, 17, 1, 11, 6, 12, 2, 11, 17, 8, 12, 7, 15, 1, 5, 17, 19, 5, 16, 15, 20, 7, 4, 12, 6, 17, 6, 8, 10, 8, 13, 15, 2, 6, 16, 11, 16, 16, 16, 1, 2, 17, 9, 4, 3, 7, 4, 1, 14, 16, 1, 1, 15, 20, 2, 13, 15, 15, 11, 5, 18, 1, 14, 19, 19, 19, 19, 5, 5, 12, 5, 2, 2, 2, 9, 8, 12, 6, 20, 18, 12, 12, 19] sol1=[1, 0, 1, 1, 0, 1] sol2=[0, 0, 1, 0, 1, 1] @@ -27,11 +29,12 @@ def genetic(problem_data, k, popsize, mutation_chance, stop, reproduce): best = fitness(population[-1], problem_data, k) new = [] for _ in range(reproduce): - parents = random.choices(population, cum_weights=[1]*popsize, k=2) + weightsP = [(i+1)**2 for i in range(popsize)] + parents = random.choices(population, weights=weightsP, k=2) x = random.random() offspring = crossover(*parents) new.append(mutation(offspring, k) if mutation_chance>x else offspring) - population = sorted(population + new, key=lambda x: fitness(x, problem_data, k), reverse=True)[-4:] + population = sorted(population + new, key=lambda x: fitness(x, problem_data, k), reverse=True)[-popsize:] new_best = fitness(population[-1], problem_data, k) loop = loop + 1 if best<=new_best else 0 @@ -39,6 +42,6 @@ def genetic(problem_data, k, popsize, mutation_chance, stop, reproduce): return(population[-1]) -ans = genetic(tasks, 2, 4, 0.2, 10, 4) +ans = genetic(tasks, 4, 10, 0.7, 10, 5) print(ans) -print(fitness(ans, tasks, 2)) +print(fitness(ans, tasks, 4))