# # Sam Hadow - Huffman-py # Copyright (C) 2023 # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . # import unittest from huffman_py.Node import * from huffman_py.Tree import * from huffman_py.functions.encode import * from huffman_py.functions.decode import * from huffman_py.functions.occurence import * # pour lancer les tests utilisez: # python -m unittest discover class TestUtils(unittest.TestCase): def test_Tree_id(self): a = Node(10, 'a') b = Node(8,'b') r1 = Node(18,'',left=b,right=a) tree1 = Tree(r1) # vérification affectation d'un identifier unique en créant l'tree liste_id = [] verification_id = True for elem in tree1.nodes: liste_id.append(elem.identifier) if len(liste_id) > len(set(liste_id)): verification_id = False self.assertTrue(verification_id) def test_Tree_fusion(self): # fusion des trees # on doit retrouver les éléments des 2 trees + une nouvelle root # les identifiers doivent toujours être uniques a = Node(10, 'a') b = Node(8,'b') r1 = Node(18,'',left=b,right=a) c = Node(15, 'c') d = Node(20,'d') r2 = Node(18,'',left=d,right=c) tree1 = Tree(r1) tree2 = Tree(r2) l1 = len(tree1.nodes) l2 = len(tree2.nodes) tree1 += tree2 verification_fusion = True if l1+l2+1 != len(tree1.nodes): verification_fusion = False liste_id2 = [] verification_id2 = True for elem in tree1.nodes: liste_id2.append(elem.identifier) if len(liste_id2) > len(set(liste_id2)): verification_id2 = False self.assertTrue(verification_fusion) self.assertTrue(verification_id2) def test_Tree_seek(self): # seek de node a = Node(10, 'a') b = Node(8,'b') r1 = Node(18,'',left=b,right=a) tree1 = Tree(r1) self.assertEqual(tree1.seek(a),a) self.assertNotEqual(tree1.seek(b),a) def test_Tree_suppression(self): a = Node(10, 'a') b = Node(8,'b') r1 = Node(18,'',left=b,right=a) r2 = Node(18,'',left=None,right=r1) tree1 = Tree(r2) tree1 -= r1 self.assertEqual(tree1.seek(a),None) self.assertEqual(tree1.seek(b),None) self.assertEqual(tree1.seek(r1),None) self.assertEqual(tree1.seek(r2),r2) def test_occurences(self): o1 = calcul_occurence('aaabcc') o2 = calcul_occurence('bacaac') # dans les 2 cas on doit avoir le même dictionnaire # 3 pour a, 2 pour c, 1 pour b self.assertEqual(o1,o2) self.assertEqual(o1['c'],2) self.assertEqual(o1['b'],1) self.assertEqual(o1['a'],3) def test_encodage_huffman(self): string = 'mouton' string2 = 'vache' (encodedOutput, root, huffmanEncoding) = huffman_encode(string) (encodedOutput2, root2, huffmanEncoding2) = huffman_encode(string2) # l'encodage doit être différent (les dictionnaires et trees aussi) self.assertNotEqual(huffmanEncoding, huffmanEncoding2) self.assertNotEqual(encodedOutput, encodedOutput2) self.assertNotEqual(Tree(root),Tree(root2)) def test_decodage_huffman(self): string = 'chèvre' (encodedOutput, root, huffmanEncoding) = huffman_encode(string) # on doit être capable de décoder avec la root de l'tree ou avec le dictionnaire self.assertEqual(string,huffman_decode(encodedOutput,root)) self.assertEqual(string,decode_from_dict(encodedOutput,huffmanEncoding)) # on doit être capable de détecter si le dictionnaire/tree n'est pas celui correspondant à un texte encodé string2 = 'poule' (encodedOutput2, root2, huffmanEncoding2) = huffman_encode(string2) with self.assertRaises(ValueError): decode_from_dict(encodedOutput2,huffmanEncoding) with self.assertRaises(ValueError): huffman_decode(encodedOutput2,root) if __name__ == '__main__': unittest.main()